電気学会論文誌D(産業応用部門誌)
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
論文
Simple Non-regenerative Deceleration Control of Permanent Magnetic Synchronous Motor for Vibration Control in Drum-type Washer/Dryer
Yoshio TomigashiAkira OkonogiKeiji Kishimoto
著者情報
ジャーナル フリー

2005 年 125 巻 7 号 p. 673-680

詳細
抄録
Drum-type washer/dryers are becoming more common in Japan, but the vibration created by unequally distributed clothes is a significant problem in this type of machine. We have developed a vibration control that prevents this imbalance by re-arranging the balancer fluid on the opposite side of the heavier distribution when there is unequal distribution. The drum, which has a large inertia, must be decelerated rapidly to enable the balancer fluid to shift. When a permanent magnetic synchronous motor is decelerated using an inverter, the machine's energy is converted into electrical energy, which regenerates the power supply. A control method has been developed that adjusts the input power of the motor to zero, thereby eliminating the need for a discharge circuit. However, it is not easy to achieve this method with an inexpensive microcomputer.
In this paper, a practical braking method in which energy does not regenerate the power supply is examined. First, a simple method in which non-regenerative braking is possible with low input power is proposed, even though the input power is not zero. The effectiveness of this non-regenerative deceleration control is verified by theoretical numerical analysis and by an experiment. The borderline of the voltage vector for the non-generative braking is affected by dead time, and the experimental results differ from the theoretically calculated results. However, it is experimentally confirmed that the proposed non-regenerative deceleration control can be achieved by correcting the impressed voltage vector based on experimental results. Finally, this control is applied to the vibration control of the drum-type washer/dryer, and it is confirmed that the balancer fluid moves as designed.
著者関連情報
© 2005 by the Institute of Electrical Engineers of Japan
次の記事
feedback
Top