抄録
This paper presents characteristics comparison of a high-frequency multi-level inverter connected with small capacity filter inverters. In general, PWM inverters require a low-pass filter in order to reduce switching harmonics. However, in the high-frequency systems such as class D power amplifiers, the cut-off frequency of the low-pass filter must set at high frequency. Thus, harmonic distortion of the output voltage harmfully enlarges. Increasing the number of output voltage levels is effective to reduce the harmonic distortion of the output voltage and the low-pass filter size. The proposed systems consist of a 5-level inverter and several cascade-connected low-voltage full bridge inverters without any external DC power sources for filtering the output voltage. The 5-level inverter generates a stepwise waveform with 5-level voltage, and the low voltage filter inverter superimposes harmonic components to compensate for the voltage waveform distortion. Therefore, the proposed system can reduce its total switching loss and can increase the number of the output voltage levels. In this paper, effectiveness of the proposed systems is verified through several experiments.