抄録
This paper proposes a large-scale matrix converter system which connects two main circuits in parallel and in which the carriers operating each main circuit have a phase difference of 180 degrees. A matrix converter needs an LC filter, not only because it acts as a conventional filter which reduces high frequency ripples caused by the converter switching, but also because the capacitor of the LC filter acts as a virtual voltage source. Therefore, this filter must be connected at the input side. The proposed system uses a miniaturized LC filter because the harmonics of the current flowing into the LC filter contain only the even number harmonics of the carrier and the cut-off frequency of the LC filter can be raised. For example, when the cut-off frequency is doubled, the inductor or the capacitor of the LC filter can be reduced to 1/4. The principle of raising the filter current's frequency is verified theoretically using simulations. Furthermore, in the proposed system, the distortion of the output voltages become less than with a conventional single matrix converter, and the common mode voltage and the common mode current, which cause electromagnetic interference (EMI), can also be decreased.