電気学会論文誌D(産業応用部門誌)
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
特集論文
次世代型知的防犯カメラのための深層学習を用いた遮蔽人体の復元推定
長山 格岩永 竜也上原 和加貴宮里 太也
著者情報
ジャーナル 認証あり

2021 年 141 巻 2 号 p. 138-146

詳細
抄録

This paper presents the development of a new method for the estimation and resolution of body occlusion using deep learning for an advanced intelligent video surveillance system. A generative adversarial network is used to estimate and reconstruct an image of a hidden part of the human body. Furthermore, an alternative learning approach using 3DCG that was developed in our previous study is adopted to create a large dataset for deep learning. Experimental results indicate that the proposed method performs well in the estimation of hidden parts of the human body using images of actual people.

著者関連情報
© 2021 電気学会
前の記事 次の記事
feedback
Top