電気学会論文誌D(産業応用部門誌)
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
研究開発レター
機械学習による燃料電池の水素流量推定に関する検討
小川 大樹星 伸一
著者情報
ジャーナル 認証あり

2025 年 145 巻 6 号 p. 504-505

詳細
抄録

This paper proposes a method for hydrogen flow rate estimation in fuel cells using time-series prediction with machine learning based on existing measurement values such as fuel cell output power, output current, and purge timing. In the proposed method, the appropriate combinations of feature quantities and sequence length are selected using a genetic algorithm. As a result, the proposed method reduces the mean absolute error (MAE) by approximately 50% compared to the linear approximation between the current and hydrogen flow rate.

著者関連情報
© 2025 電気学会
前の記事 次の記事
feedback
Top