IEEJ Transactions on Power and Energy
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
Special Issue Paper
PV Output Forecasting by Deep Boltzmann Machines with SS-PPBSO
Shota OgawaHiroyuki Mori
Author information
JOURNAL RESTRICTED ACCESS

2020 Volume 140 Issue 2 Pages 86-93

Details
Abstract

This paper proposes an efficient method for photovoltaic (PV) system output forecasting by Deep Boltzmann Machines (DBM) with Scatter Search-Predator-Prey Brain Storm Optimization (SS-PPBSO). DBM plays a key role to extract features of input variables while SS-PPBSO is a new evolutionary computation that combines PPBSO with Scatter Search. In recent years, as renewable energy, PV systems are positively introduced into power network in Japan so that power system operation becomes complicated due to the uncertainty. To overcome this challenge, it is required to forecast PV outputs that are influenced by weather conditions significantly. This paper proposes a new efficient PV output forecasting method with DBM that makes use of SS-PPBSO in learning. The effectiveness of the proposed method is demonstrated for real data of a PV system.

Content from these authors
© 2020 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top