Abstract
Large capacity adjustable speed machines (ASMs) at pumped storage power station have been put into full operation and the operating characteristics of ASM have been highly evaluated from the view point of power system operation. The output power (input power) of ASM can be controlled very quickly by applying a vector control scheme to the excitation control. This quick responsive feature of ASM can make it possible to improve the stability of the neighbor sub-power system.
For improvement of transient stability, the output power of ASM is reduced very quickly in order to control the acceleration of neighbor generators during and after transmission line faults. For improvement of dynamic stability, the output power of ASM is modulated in accordance with the stabilizing signals detected from the swing of generator rotor or the power flow fluctuation on the transmission line.
This paper describes the design concepts and method of control system for improving the transient and dynamic stability and proposes a power system stabilizing control system. The effects of the proposed stabilizing control system have been verified by a power system simulator.