Interdisciplinary Information Sciences
Online ISSN : 1347-6157
Print ISSN : 1340-9050
ISSN-L : 1340-9050
On the Inhomogeneous Yang-Mills Equation dD*R D=f
Sorin DRAGOMIRHajime URAKAWA
著者情報
ジャーナル フリー

2000 年 6 巻 1 号 p. 41-52

詳細
抄録
We build a canonical family {Ds } of Hermitian connections in a Hermitian CR-holomorphic vector bundle (E,h ) over a nondegenerate CR manifold M, parametrized by S ∈ Γ ∞(End (E )), S skewsymmetric. Consequently, we prove an existence and uniqueness result for the solution to the inhomogeneous Yang-Mills equation dD*R D =f on M. As an application we solve for D ∈D (E,h ) when E is either the trivial line bundle, or a locally trivial CR-holomorphic vector bundle over a nondegenerate real hypersurface in a complex manifold, or a canonical bundle over a pseudo-Einstein CR manifold.
著者関連情報
© 2000 by the Graduate School of Information Sciences (GSIS), Tohoku University

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top