Interdisciplinary Information Sciences
Online ISSN : 1347-6157
Print ISSN : 1340-9050
ISSN-L : 1340-9050

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

The Elements of Multi-Variate Analysis for Data Science
Mohammad Samy BALADRAMNobuaki OBATA
著者情報
ジャーナル フリー 早期公開

論文ID: 2020.A.02

この記事には本公開記事があります。
詳細
抄録

These lecture notes provide a quick review of basic concepts in statistical analysis and probability theory for data science. We survey general description of single- and multi-variate data, and derive regression models by means of the method of least squares. As theoretical backgrounds we provide basic knowledge of probability theory which is indispensable for further study of mathematical statistics and probability models. We show that the regression line for a multi-variate normal distribution coincides with the regression curve defined through the conditional density function. In Appendix matrix operations are quickly reviewed. These notes are based on the lectures delivered in Graduate Program in Data Science (GP-DS) and Data Sciences Program (DSP) at Tohoku University in 2018–2020.

著者関連情報
© 2020 by the Graduate School of Information Sciences (GSIS), Tohoku University

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
feedback
Top