International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Texturing Processes and Attainable Functionalities
Textured Surface of Self-Assembled Particles as a Scaffold for Selective Cell Adhesion and Growth
Arata KanekoIwori Takeda
著者情報
ジャーナル オープンアクセス

2016 年 10 巻 1 号 p. 62-68

詳細
抄録

SiO2 particles (φ 1 μm) self-assemble into hexagonal arrangements on a glass substrate. Dip-coating is also used to produce linear patterns of particles several tens of micrometers in width on substrates patterned with octadecyltrichlorosilane (OTS). Some particles are coated with specific proteins via electrochemical adsorption and structured on a glass substrate. The upper surfaces of self-assembled particles have specifically-ordered asperities that can be called textures. These textured surfaces are applied to a cell scaffold. PC12 and HeLa cells adhere to the textured surfaces of particles more often than they adhere to flat (smooth) surfaces. The cells are located on approximately 50-μm-width of self-assembled particles. Thus, it is found that the textured surface of particles functions as a template for autonomous cell patterning. An in-situ observation shows that the selective adhesion of cells is achieved by their extensions and migrations from the flat region to the particles. Coating particles with proteins enhances cell adhesiveness in such a way that isolated cells adhere to the linear patterns of particles in straight lines. The textured surfaces of particles also affect cell growth. As cell growth is restricted on the textured surfaces of particles, a confluent state of aggregated cells is achieved on only a linear pattern of particles.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top