International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Biomedical Applications
Surface Microfabrication of Conventional Glass Using Femtosecond Laser for Microfluidic Applications
Takuma NiiokaYasutaka Hanada
著者情報
ジャーナル オープンアクセス

2017 年 11 巻 6 号 p. 878-882

詳細
抄録

Recently, a lot of attention has been paid to a single-cell analysis using microfluidic chips, since each cell is known to have several different characteristics. The microfluidic chip manipulates cells and performs high-speed and high-resolution analysis. In the meanwhile, femtosecond (fs) laser has become a versatile tool for the fabrication of microfluidic chips because the laser can modify internal volume solely at the focal area, resulting in three-dimensional (3D) microfabrication of glass materials. However, little research on surface microfabrication of materials using an fs laser has been conducted. Therefore, in this study, we demonstrate the surface microfabrication of a conventional glass slide using fs laser direct-writing for microfluidic applications. The fs laser modification, with successive wet etching using a diluted hydrofluoric (HF) acid solution, followed by annealing, results in rapid prototyping of microfluidics on a conventional glass slide for fluorescent microscopic cell analysis. Fundamental characteristics of the laser-irradiated regions in each experimental procedure were investigated. In addition, we developed a novel technique combining the fs laser direct-writing and the HF etching for high-speed and high-resolution microfabrication of the glass. After establishing the fs laser surface microfabrication technique, a 3D microfluidic chip was made by bonding the fabricated glass microfluidic chip with a polydimethylsiloxane (PDMS) polymer substrate for clear fluorescent microscopic observation in the microfluidics.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top