International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Gap Detection Using Convolutional Neural Network and Adaptive Control in Robotic Plasma Welding
Satoshi YamaneKouki Matsuo
Author information
JOURNAL OPEN ACCESS

2019 Volume 13 Issue 6 Pages 796-802

Details
Abstract

Welding is an essential technology for joining metal plates. In general, gas metal arc welding (GMAW) generates a large amount of fumes in the welding of thick metal plates. In contrast, the butt joining of thick metal plates can be achieved using plasma arc welding (PAW) with a lower amount of fumes. Further, the improvement of the welding environment is critical in welding. In particular, if there are gaps between the base metals, the welding conditions are adjusted based on the gap. A visual sensor, such as a complementary metal-oxide-semiconductor (CMOS) camera, is useful for observing the welding situation. In this study, such a camera was attached to a plasma torch. During welding, we obtained weld pool images using the camera and detected the gaps by processing the images. As the arc light is very intense, it is difficult to obtain a clear image of the weld pool in PAW. In conventional welding, a constant current is used; however, pulsed welding current is used herein to obtain a clear image. The frequency of the current is 20 Hz, which indicates that the interval time is 50 ms. Moreover, the welding current was reduced to 30 A to minimize the effect of the intense arc light while the shutter of the CMOS camera was opened. The exposure time of the CMOS camera is 1 ms. Furthermore, gaps can be detected through image processing. It is necessary to identify the base metals with or without a gap. It was observed that the gap is darker than the solid area of the base metal. Moreover, a gap can be detected through the binarization method. The center area is not dark in the image of the weld pool without the gap. As the image of the weld pool is uneven without a gap, the binarization method can provide a detection result with some errors. Hence, it is challenging to identify whether there is a gap. A convolutional neural network (CNN) is useful for analyzing images. Thus, we applied a CNN to the weld pool image. If the gap is identified using the CNN, the binarization method is used to obtain the gap width. Hence, in PAW, welding conditions are adjusted based on the gap.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top