International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Recognition of Transient Environmental Sounds Based on Temporal and Frequency Features
Shota OkuboZhihao GongKento FujitaKen Sasaki
Author information
JOURNAL OPEN ACCESS

2019 Volume 13 Issue 6 Pages 803-809

Details
Abstract

Environmental sound recognition (ESR) refers to the recognition of all sounds other than the human voice or musical sounds. Typical ESR methods utilize spectral information and variation within it with respect to time. However, in the case of transient sounds, spectral information is insufficient because only an average quantity of a given signal within a time period can be recognized. In this study, the waveform of sound signals and their spectrum were analyzed visually to extract temporal characteristics of the sound more directly. Based on the observations, features such as the initial rise time, duration, and smoothness of the sound signal; the distribution and smoothness of the spectrum; the clarity of the sustaining sound components; and the number and interval of collisions in chattering were proposed. Experimental feature values were obtained for eight transient environmental sounds, and the distributions of the values were evaluated. A recognition experiment was conducted on 11 transient sounds. The Mel-frequency cepstral coefficient (MFCC) was selected as reference. A support vector machine was adopted as the classification algorithm. The recognition rates obtained from the MFCC were below 50% for five of the 11 sounds, and the overall recognition rate was 69%. In contrast, the recognition rates obtained using the proposed features were above 50% for all sounds, and the overall rate was 86%.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top