International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Advances in Abrasive Technology
Effect of Ultrafine Bubbles on Pseudomonas Aeruginosa and Staphylococcus Aureus During Sterilization of Machining Fluid
Hiroko YamadaKensuke KonishiKeita ShimadaMasayoshi MizutaniTsunemoto Kuriyagawa
著者情報
ジャーナル オープンアクセス

2021 年 15 巻 1 号 p. 99-108

詳細
抄録

Bacterial growth is one of the common causes of putrefaction and deterioration of water-soluble machining fluid. The 16S ribosomal DNA metagenome analysis of the bacterial species composing the microbial flora present in the machining fluid derived after processing demonstrated a high amount of species belonging to the Pseudomonas genus. Therefore, we prepared two types of ultrafine bubbles water (gas species: air and CO2) containing different types of gas and confirmed the bactericidal effect on Pseudomonas aeruginosa (ATCC 10145), a typical Pseudomonas species. The grinding fluid was prepared using sterile purified water containing ultrafine bubbles (hereafter referred to as UFB) as diluted water, and the Pseudomonas aeruginosa was inoculated to obtain 106 CFU/mL. The sterilization rate of the number of bacteria was determined immediately after immersion in each fluid and subsequently after two hours. The sterilization rate was determined to be 100% in the test group using the ultrafine bubbles water of CO2 (CO2-UFB water). As a comparative control, a similar test was performed on Staphylococcus aureus IFO12732, and the sterilization rate was determined as 0%. Fluorescence microscopic observation of bacteria after immersion in the CO2-UFB water demonstrated damage to the cell wall as the cause of death of the Pseudomonas aeruginosa. Therefore, CO2-UFB demonstrated sterilization of machining fluid by killing Pseudomonas aeruginosa in the machining fluid. The bactericidal mechanism of UFB involved the induction of damage in bacterial cell walls. This can be attributed to crushing due to the increase in the particle size of UFB.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top