International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Prompt Estimation of Die and Mold Machining Time by AI Without NC Program
Hiroki TakizawaHideki AoyamaSong Cheol Won
Author information
JOURNAL OPEN ACCESS

2021 Volume 15 Issue 3 Pages 350-358

Details
Abstract

Machining time estimation is essential for the due-date estimation of products as well as for production planning. Conventionally, machining time has been estimated by a computer aided manufacturing (CAM) system, which requires time and effort to create its numerical control (NC) program and requires machining expertise to operate it. In addition, among the problems with conventional methods, an error in the estimated machining time arises owing to the machine tool’s control characteristics. In this study, an artificial intelligence (AI)-based system capable of estimating machining time promptly and simply based on shape data without requiring any NC program is developed. The input data to the AI system are color information regarding the machined depths, which are used to estimate the rough-machining time, and color information regarding the machined surface curvature distributions to estimate the finish-machining time. Color information on the machined depths and machined surface curvature distributions is created using three-dimensional computer aided design (3D CAD) data. To build the AI system, the shape data and machining time data accumulated at the machining site are used, so that the machining time estimated reflects the machining method, machining expertise, and the machine tool characteristics employed.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top