International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Effect of Strain-Rate on Forming Limit Strain of Aluminum Alloy and Mild Steel Sheets Under Strain Path Change
Minoru YamashitaShohei KomuroMakoto Nikawa
Author information
JOURNAL OPEN ACCESS

2021 Volume 15 Issue 3 Pages 343-349

Details
Abstract

The aim of this study is to show the effect of the strain-rate on the forming limit strain of an aluminum alloy A5052 sheet and a mild steel sheet SPCC. Biaxial stretching test was carried out. The prescribed strain path was linear path or that with directional change in straining. The sheet was pre-strained by uniaxial tension in the latter path. The deformation speed was set to be quasi-static or high speed whose strain-rate was about 300 /s using the dedicated high speed stretching device. The forming limit strain of the A5052 sheet for the linear strain path was larger in the high speed stretching than that under the quasi-static condition. For the case with strain path change the forming limit strain was further large. This may be due to the softening phenomenon which occurs by aging treatment, because the stretching experiment was conducted about two weeks after the pre-straining operation. On the other hand, the forming limit strain of the SPCC under the high speed condition was smaller than that under the quasi-static condition in the linear strain path. This is attributed to the decreased strain hardening exponent when the strain-rate increases. Further, in the equi-biaxial stretching of the pre-strained specimen, large difference of the forming limit strain between the deformation speeds was found. It is concluded that A5052 aluminum alloy sheet has a good adaptability to high speed forming, on the other hand, attention should be paid in increasing the forming speed of SPCC.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top