International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Advanced Manufacturing Science and Technologies
Microstructure and Mechanical Properties of AlSi12CuNi Alloy Fabricated by Laser Powder Bed Fusion Process
Akihiro HirayamaMasaaki KimuraMasahiro KusakaKoichi Kaizu
著者情報
ジャーナル オープンアクセス

2021 年 15 巻 4 号 p. 388-395

詳細
抄録

The microstructure and mechanical properties of the AlSi12CuNi alloy fabricated by the additive manufacturing technique, laser powder bed fusion (L-PBF), were investigated. Several laser irradiation conditions were examined to optimize the manufacturing process to obtain a high volume density of the fabricated alloy. Good fabricated samples with a relative density of 99% or higher were obtained with no cracks. The fabricated samples exhibited significantly good mechanical properties, such as ultimate tensile strength, breaking elongation, and micro-hardness, compared to the conventional die casting AlSi12CuNi alloy. Fine microstructures consisting of the α-Al phase and a nano-sized eutectic Al-Si network were observed. The dimensions of the microstructures were smaller than those of the conventional die-casting AlSi12CuNi alloy. The superior mechanical properties were attributed to the microstructure associated with the rapid solidification in the L-PBF process. Furthermore, the influence of the building direction on the mechanical properties of the fabricated samples was evaluated. The ultimate tensile strength and breaking elongation were significantly affected by the building direction; mechanical properties parallel to the roller moving direction were significantly better than those perpendicular to the roller moving direction. In conclusion, AlSi12CuNi alloys with good characteristics were successfully fabricated by the L-PBF process.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top