抄録
This article is the summary for the paper (Liu et al. 2015) receiving the best research paper award from the Japanese Society for Rock Mechanics (JSRM) in the fiscal year of 2015. A fractal model to represent the geometrical characteristics of rock fracture networks is proposed to link the fractal characteristics with the equivalent permeability of fracture networks. Fractal dimension DT is utilized for representing the tortuosity of fluid flow and fractal dimension Df is utilized for representing the geometrical distribution of fractures in the networks. The results indicate that the equivalent permeability of fracture networks can be significantly influenced by the tortuosity of fluid flow, the aperture of fractures and a random number for generating the fractal length distribution of fractures in networks. Using the proposed fractal model, a mathematical expression between equivalent permeability K and fractal dimension Df is proposed for the models with large Df. The difference of calculated flow volume between the models considering and without considering the influences of tortuosity of fluid flow could be as high as 17.64% ~19.51%, emphasizing that the effects of tortuosity should not be neglected and should be included in the fractal model for accurately estimating the hydraulic behavior of fracture networks.