抄録
Electromagnetic levitation of electrically conductive droplets by alternating magnetic fields is a technique used to measure the physical properties of liquid metallic alloys as heat capacity and thermal diffusivity, among others. In order to reduce electromagnetic stirring and shaping of the molten sample, experiments are conducted in microgravity 1). Measurement is performed by using the modulation calorimetry technique [2][3]. Here we test both numerically and experimentally a new measurement protocol, which aim is to eliminate calibration. We use this procedure to demonstrate that the use of a levitator in a DC magnetic field overcomes the negative effects of the electromagnetic stirring inside the sample on the accuracy of the modulated calorimetry technique.