Information and Media Technologies
Online ISSN : 1881-0896
ISSN-L : 1881-0896
Computer Networks and Broadcasting
An Improved Classification Strategy for Filtering Relevant Tweets Using Bag-of-Word Classifiers
Muhammad Asif Hossain KhanMasayuki IwaiKaoru Sezaki
著者情報
ジャーナル フリー

2013 年 8 巻 3 号 p. 823-832

詳細
抄録
In this paper we have presented a classification framework for classifying tweets relevant to some specific target sectors. Due to the imposed length restriction on an individual tweet, tweet classification faces some additional challenges which are not present in most other short text classification problems, needless to say in classification of standard written text. Hence, bag-of-word classifiers, which have been successfully leveraged for text classification in other domains, fail to achieve a similar level of accuracy in classifying tweets. In this paper, we have proposed a collocation feature selection algorithm for tweet classification. Moreover, we have proposed a strategy, built on our selected collocation features, for identifying and removing confounding outliers from a training set. An Evaluation on two real world datasets shows that the proposed model yields a better accuracy than the unigram model, uni-bigram model and also a partially supervised topic model on two different classification tasks.
著者関連情報
© 2013 Information Processing Society of Japan
前の記事 次の記事
feedback
Top