Information and Media Technologies
Online ISSN : 1881-0896
ISSN-L : 1881-0896
Media (processing) and Interaction
Fisher Vector based on Full-covariance Gaussian Mixture Model
Masayuki TanakaAkihiko ToriiMasatoshi Okutomi
著者情報
ジャーナル フリー

2013 年 8 巻 4 号 p. 1041-1045

詳細
抄録
In image retrieval applications, the Fisher vector of the Gaussian mixture model (GMM) with a diagonal-covariance structure is known as a powerful tool to describe an image by aggregating local descriptors extracted from the image. In this paper, we propose the Fisher vector of the GMM with a full-covariance structure. The closed-form approximation of the GMM with a full-covariance structure is derived. Our observation is that the Fisher vector of a higher dimensional GMM yields higher image retrieval performance. The Fisher vector for the GMM with a block-diagonal-covariance structure is also introduced to provide moderate dimensionality for the GMM. Experimental comparisons performed using two major datasets demonstrate that the proposed Fisher vector outperforms state-of-the-art algorithms.
著者関連情報
© 2013 Information Processing Society of Japan
前の記事 次の記事
feedback
Top