Information and Media Technologies
Online ISSN : 1881-0896
ISSN-L : 1881-0896
Computing
Detection of Activities and Events without Explicit Categorization
Masao YamanakaMasakazu MatsuguMasashi Sugiyama
著者情報
ジャーナル フリー

2013 年 8 巻 4 号 p. 937-943

詳細
抄録
We propose a method of unsupervised event detection from a video that compares probability distributions of past and current video sequence data in a sequential and hierarchical way. Because estimation of probability distributions is known to be difficult, naively comparing probability distributions via probability distribution estimation tends to be unreliable in practice. To cope with this problem, we use the state-of-the-art machine learning technique called density ratio estimation: The ratio of probability densities is directly estimated without density estimation, and thus probability distributions can be compared in a reliable way. Through experiments on a walking scene and a tennis match, we demonstrate the usefulness of the proposed approach.
著者関連情報
© 2013 Information Processing Society of Japan
前の記事 次の記事
feedback
Top