Industrial Health
Online ISSN : 1880-8026
Print ISSN : 0019-8366
ISSN-L : 0019-8366
Original Article
Vibration Disrupts Vascular Function in a Model of Metabolic Syndrome
Kristine KRAJNAKStacey WAUGHClaud JOHNSONRoger MILLERMegan KIEDROWSKI
Author information
JOURNAL FREE ACCESS

2009 Volume 47 Issue 5 Pages 533-542

Details
Abstract

Vibration-induced white finger (VWF) is a disorder seen in workers exposed to hand-transmitted vibration, and is characterized by cold-induced vasospasms and finger blanching. Because overweight people with metabolic syndrome are pre-disposed to developing peripheral vascular disorders, it has been suggested that they also may be at greater risk of developing VWF if exposed to occupational vibration. We used an animal model of metabolic syndrome, the obese Zucker rat, to determine if metabolic syndrome alters vascular responses to vibration. Tails of lean and obese Zucker rats were exposed to vibration (125 Hz, 49 m/s2 r.m.s.) or control conditions for 4 h/d for 10 d. Ventral tail arteries were collected and assessed for changes in gene expression, levels of reactive oxygen species (ROS) and for responsiveness to vasomodulating factors. Vibration exposure generally reduced the sensitivity of arteries to acetylcholine (ACh)-induced vasodilation. This decrease in sensitivity was most apparent in obese rats. Vibration also induced reductions in vascular nitric oxide concentrations and increases in vascular concentrations of ROS in obese rats. These results indicate that vibration interferes with endothelial-mediated vasodilation, and that metabolic syndrome exacerbates these effects. These findings are consistent with idea that workers with metabolic syndrome have an increased risk of developing VWF.

Content from these authors
© 2009 by National Institute of Occupational Safety and Health
Previous article Next article
feedback
Top