Journal of Information Processing
Online ISSN : 1882-6652
Unsupervised Clustering-based SPITters Detection Scheme
Kentaroh ToyodaIwao Sasase
Author information
Keywords: SPIT, VoIP/SIP security
JOURNALS FREE ACCESS

Volume 23 (2015) Issue 1 Pages 81-92

Details
Download PDF (635K) Contact us
Abstract

VoIP/SIP is taking place of conventional telephony because of very low call charge but it is also attractive for SPITters who advertise or spread phishing calls toward many callees. Although there exist many feature-based SPIT detection methods, none of them provides the flexibility against multiple features and thus complex threshold settings and training phases cannot be avoided. In this paper, we propose an unsupervised and threshold-free SPITters detection scheme based on a clustering algorithm. Our scheme does not use multiple features directly to trap SPITters but uses them to find the dissimilarity among each caller pair and tries to separate the callers into a SPITters cluster and a legitimate one based on the dissimilarity. By computer simulation, we show that the combination of Random Forests dissimilarity and PAM clustering brings the best classification accuracy and our scheme works well when the SPITters account for more than 20% of the entire caller.

Information related to the author
© 2015 by the Information Processing Society of Japan
Previous article

Recently visited articles
feedback
Top