IPSJ Transactions on System and LSI Design Methodology
Online ISSN : 1882-6687
ISSN-L : 1882-6687
VLSI Architecture Design for H.264/AVC Intra-frame Video Encoding
Huang-Chih KuoYoun-Long Lin
著者情報
ジャーナル フリー

2013 年 6 巻 p. 76-93

詳細
抄録

Intra-frame encoding is useful for many video applications such as security surveillance, digital cinema, and video conferencing because it supports random access to every video frame for easy editing and has low computational complexity that results in low hardware cost. H.264/AVC, which is the most popular video coding standard today, also defines novel intra-coding tools to achieve high compression performance at the expense of significantly increased computational complexity. We present a VLSI design for H.264/AVC intra-frame encoder. The paper summaries several novel approaches to alleviate the performance bottleneck caused by the long data dependency loop among 4 × 4 luma blocks, integrate a high-performance hardwired CABAC entropy encoder, and apply a clock-gating technique to reduce power consumption. Synthesized with a TSMC 130nm CMOS cell library, our design requires 194.1K gates at 108MHz and consumes 19.8mW to encode 1080p (1920 × 1088) video sequences at 30 frames per second (fps). It also delivers the same video quality as the H.264/AVC reference software. We suggest a figure of merit called Design Efficiency for fair comparison of different works. Experimental results show that the proposed design is more efficient than prior arts.

著者関連情報
© 2013 by the Information Processing Society of Japan
前の記事 次の記事
feedback
Top