システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
論文
強化学習における状態数を抑制するクラスタリング方法
小谷 直樹布引 雅之谷口 研二
著者情報
ジャーナル フリー

2009 年 22 巻 1 号 p. 21-28

詳細
抄録
We propose an efficient state-space construction method for a reinforcement learning. Our method controls the number of categories with improving the clustering method of Fuzzy ART which is an autonomous state-space construction method. The proposed method represents weight vector as the mean value of input vectors in order to curb the number of new categories and eliminates categories whose state values are low to curb the total number of categories. As the state value is updated, the size of category becomes small to learn policy strictly. We verified the effectiveness of the proposed method with simulations of a reaching problem for a two-link robot arm. We confirmed that the number of categories was reduced and the agent achieved the complex task quickly.
著者関連情報
© 2009 システム制御情報学会
前の記事 次の記事
feedback
Top