システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
最小2乗法を適用した回帰型ニューラルネットワークの誤差逆伝播法
山脇 重信藤野 政司今尾 勝三
著者情報
ジャーナル フリー

1999 年 12 巻 4 号 p. 225-233

詳細
抄録

The back propagation method on the basis of the gradient method is often utilized as a learning rule of a neural network. This paper proposes a back propagation method using the least mean-square method for the output recurrent neural network. The approach consists of the decision of the input vector and the parameter estimation of each layer. The input vector of the output layer is corrected to decrease the output error corresponding to learning rate and the learning value of the other layer. The parameter is calculated using the least-square method from the obtained input and output of each layer.
The identification result for the linear oscillation system shows the effectiveness of the proposed algorithm which is not based on the gradient method. It is shown that better estimate is obtained by the proposed algorithm compared with the classical back propagation method.

著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top