システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
探索空間拡張による二次形式の0-1最適化
森 耕平原 辰次
著者情報
ジャーナル フリー

2001 年 14 巻 1 号 p. 10-17

詳細
抄録
This paper is concerned with the boolean quadratic optimization problem. We formulate and analyze a class of non-convex relaxation problems which includes the relaxation problem with complex variables and the SDP relaxation problem as special cases. The effects of expanding the parameter space of decision variables to a space of hypercomplex number are investigated. It is shown that for any instance of problem data the relaxation problem in complex variable is the strongest non-convex relaxation among the relaxations (in our formulation) under the condition of having “monotonically decreasing path” which connects any two feasible solutions of the original problem.
著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top