システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
連続力学システムの自動制御のためのオンラインEM強化学習法
吉本 潤一郎石井 信佐藤 雅昭
著者情報
ジャーナル フリー

2003 年 16 巻 5 号 p. 209-217

詳細
抄録
In this paper, we propose a new reinforcement learning (RL) method for dynamical systems that have continuous state and action spaces. Our RL method has an architecture like the actorcritic model. The critic tries to approximate the Q-function, and the actor tries to approximate a stochastic soft-max policy dependent on the Q-function. An on-line EM algorithm is used to train the critic and the actor. We apply this method to two control problems. Computer simulations in two tasks show that our method is able to acquire good control after a few learning trials.
著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top