システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
ベイズ法を用いた動的回帰分析
姜 興起
著者情報
ジャーナル フリー

1995 年 8 巻 1 号 p. 8-16

詳細
抄録
A Bayesian time varying coefficient regression model with smoothness priors is introduced for inferring the dynamic relationship between two time series. Smoothness prior in the form of a Gaussian stochastic difference equation is imposed on the regression coefficient. The estimates of hyperparameters and the order of the difference equation are determined by maximizing marginal likelihood of the hyperparameters and using the minimum ABIC procedure. The estimate of the time varying regression coefficient is obtained by maximizing a posterior density of the coefficient. A numerical example and two simulation studies on the accuracy of the procedure are given. The model is applied to the analyses of the dynamic dependences of steel consumption on GNP for four countries.
著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top