ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Crystallization Behaviors of Slags through a Heat Flux Simulator
H. G. RyuZ. T. ZhangJ. W. ChoG. H. WenS. Sridhar
Author information
JOURNALS FREE ACCESS

2010 Volume 50 Issue 8 Pages 1142-1150

Details
Abstract

This paper investigates how the basicity and alumina content in synthetic slags influence the crystallization behavior that takes place in a heat flux simulator for mold slags. The purpose is to elucidate the variation in crystallization behavior for model slags that are expected to be glassy, partly crystalline and fully crystalline in order to correlate the changes in heat flux to the dynamic solid evolution that occurs in the simulator. Three levels of alumina content (3, 15 and 25 wt%) were chosen to investigate the heat transfer behavior through slag film which have different tendency of reaction with molten steel during continuous casting of high aluminum containing Transformation Induced Plasticity (TRIP) steels. A Confocal Scanning Laser Microscopy (CSLM) was used to develop TTT diagrams for the slags. XRD and SEM were also used to analyze the micro-structures of the crystalline phases.
The measured heat fluxes through the mold slags tested were found to increase, as the crystallinity of the slag film decreased with decreasing basicity and alumina content. It was found that the crystallization temperature increased, while the incubation time for crystallization decreases with increasing basicity and alumina content. The increase in alumina content induced the precipitation of CaF2 during cooling process and hence a change in the crystalline phase from Ca4Si2O7F2 to Ca2Al2SiO7.

Information related to the author
© 2010 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top