ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Modeling and Validation of an Electric Arc Furnace: Part 2, Thermo-chemistry
Vito LogarDejan DovžanIgor Škrjanc
Author information
JOURNAL OPEN ACCESS

2012 Volume 52 Issue 3 Pages 413-423

Details
Abstract
The following paper presents an approach to the mathematical modeling of thermo-chemical reactions and relations in a 3–phase, 80 MVA AC, electric arc furnace (EAF) and represents a continuation of our work on modeling the electric and hydraulic processes of an EAF. This paper is part 2 of the complete EAF model and addresses the issues relating to chemical reactions and the corresponding chemical energy in the EAF, which are not included in part 1 of the paper, which is focused on mass, temperature and energy-exchange modeling. Part 2 and part 1 papers are related to each other accordingly and should be considered as a whole. The developed and presented sub-models are obtained according to mathematical and thermo-chemical laws, with the parameters fitting both experimentally, using the measured operational data of an EAF during different periods of the melting process, and theoretically, using the conclusions of different studies involved in EAF modeling. Part 2, part 1 and the already published electrical and hydraulic models of the EAF represent a complete EAF model, which can further be used for the initial aims of our project, i.e., optimization of the energy consumption and the development of an operator-training simulator. Like with part 1, the obtained results show high levels of similarity with both the operational measurements and theoretical data available in different studies, from which we can conclude that the presented EAF model is developed in accordance with both the fundamental laws of thermodynamics and the practical aspects relating to EAF operation.
Content from these authors
© 2012 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top