ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Microstructures and Mechanical Properties of Ternary Ti–10Cr–(V, Fe, Mo) Alloys with Self-tunable Young's Moduli for Biomedical Applications
Masaaki NakaiMitsuo NiinomiJunko HiedaToshiya Shibata
著者情報
ジャーナル オープンアクセス

2012 年 52 巻 9 号 p. 1655-1660

詳細
抄録

Ternary β-type Ti–10Cr–(V, Fe, Mo) alloys with self-tunable Young's moduli were subjected to solution treatment and cold rolling, and their microstructures and mechanical properties were investigated. During cold rolling, a band-like structure, which is considered to be {332}β<113>β mechanical twin, and deformation-induced ω phase are formed in alloys with certain chemical compositions. The number of bands increases with an increase in the cold-rolling reduction ratio and V content as well as with a decrease in Mo content. On the other hand, the Young's modulus increases during cold rolling, and the increase in Young's modulus is considered to be caused by the deformation-induced ω phase transformation. Furthermore, the tensile strength decreases slightly and the elongation tends to increase with an increase in the alloying element contents, while the effect of the V and Mo contents on the trend in changing the number of mechanical twin is opposite. These tensile properties are derived from the complicated factors among the plastic deformation mode, the type of mechanical twinning, and deformation-induced ω phase transformation, depending on the β stability and the kind of alloying element.

著者関連情報
© 2012 by The Iron and Steel Institute of Japan
前の記事 次の記事
feedback
Top