ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Development of High Efficiency Dephosphorization System in Decarburization Converter Utilizing FetO Dynamic Control
Yasushi OgasawaraYuji MikiYuichi UchidaNaoki Kikuchi
Author information

2013 Volume 53 Issue 10 Pages 1786-1793


Laboratory experiments were carried out with the aim of adapting a (FetO) dynamic control technique, in which (FetO) is estimated by calculating the oxygen balance during blowing, to the hot metal decarburization process. The rephosphorization condition in the higher decarburization rate period was then clarified based on those experiments. Next, (FetO) control experiments were carried out in a commercial-scale plant converter. (FetO) generation was promoted by increasing the oxygen flow rate and raising the lance height in the early stage of blowing, and the amount of dephosphorization during blowing was increased. Finally, a dephosphorization model was constructed by combining the coupled reaction model and the (FetO) estimation model. This model suggested an increase of the amount of dephosphorization during blowing, and the effect was confirmed by an experiment with a commercial 240 ton converter.

Information related to the author
© 2013 by The Iron and Steel Institute of Japan
Previous article Next article