2013 年 53 巻 4 号 p. 690-697
Universal rolling of channel sections has various advantages in both productivity and product quality. However, research on deformation in channel universal rolling appears to be inadequate. In particular, the effect of rolling conditions such as thickness reductions on deformation behavior is still unknown. To investigate the influence of rolling conditions in detail, a model rolling experiment and finite element analyses of channel universal rolling were conducted. The results showed that flange spread displays a linear relationship against the reduction balance, which was defined as the difference of the flange and web thickness strains. Similar linear behaviors of the flange depth and bulge height against the reduction balance were also demonstrated. The results of a non-steady-state finite element simulation showed that the friction force between the flange inside surface and the horizontal roll side surface caused asymmetric flange deformation, decreasing flange depth and increasing bulge height. The results of this research indicate the importance of the reduction balance for controlling flange deformations, and in particular, for reducing bulge height. Finally, the suitable range of the reduction balance considering other phenomena was discussed.