Abstract
Recently, advanced high strength steels for automotive applications were designed to achieve a carbide-free bainitic microstructure after conventional thermo-mechanical processing and a continuous annealing treatment. The microstructure obtained consists of ferrite laths interwoven with thin films of untransformed retained austenite. The sufficiently tough matrix and the control of the heterogeneity in the microstructure allowed an optimum combination of strength, ductility, and formability to be achieved. However, this work probed that even using a devoted theoretical alloying, carbide-free bainitic steels are hardly compatible with a conventional hot dip galvanizing annealing process, without any consideration about Zn coatability and adherence. The hardenability of the designed alloys was insufficient in some cases and the amount of austenite retained in the microstructure was too low or/and mechanically too unstable for high ductility. As a consequence, the obtained mechanical properties were comparable to those in high-Si dual phase steels without a beneficial transformation induced plasticity effect.