ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Phase Equilibrium for the CaO–SiO2–FeO–5mass%P2O5–5mass%Al2O3 System for Dephosphorization of Hot Metal Pretreatment
Xu GaoHiroyuki Matsuura Masaki MiyataFumitaka Tsukihashi
著者情報
ジャーナル オープンアクセス HTML

2013 年 53 巻 8 号 p. 1381-1385

詳細
抄録

Recently, after the restriction of the use of CaF2, dephosphorization process often generates large amount of slag, due to the neglect of refining functions of solid phases. Consequently, this brings environmental issues and influences refining. In order to improve the utilization efficiency of solid CaO and its compounds in the dephosphorization slag, multiphase flux refining has been proposed by considering the enrichment of phosphorus within the solid phases. As to provide theoretical fundamentals for both understanding on the reaction mechanism of phosphorus and practical slag control, phase relationship for the CaO–SiO2–FeO–5mass%P2O5–5mass%Al2O3 system has been studied based on chemical equilibration technique with oxygen partial pressure of 10−10 atm at 1673 K. In current work, the liquidus saturated with P2O5-rich solid solution has been firstly deduced on the CaO–SiO2–FeO ternary system, and the discussions on the relationship between solid solution and liquid phase has been proceeded. It has been found that the existence of Al2O3 enlarges the liquid phase area, but does not affect the composition of solid solution. On the other hand, the equilibrium solid phase has been confirmed as 2CaO·SiO2–3CaO·P2O5 solid solution, while the ratio between both varies along with liquidus. As expected, the large equilibrium partition ratio of phosphorus between solid solution and liquid slag has also been found and discussed.

著者関連情報
© 2013 by The Iron and Steel Institute of Japan
前の記事 次の記事
feedback
Top