ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Growth Rate of Copper Sulfide Precipitates in Solid Low Carbon Steel
Kentaro Urata Yoshinao KobayashiRie EndoMasahiro SusaWoo-Yeol Cha
著者情報
ジャーナル オープンアクセス HTML

2015 年 55 巻 1 号 p. 103-108

詳細
抄録

The kinetics of copper sulfide growth has been investigated using low carbon steel samples such as Fe-0.3mass%Cu-0.03mass%S-0.1mass%C and Fe-0.1mass%Cu-0.01 mass%S-0.1mass%C. The samples were heat-treated at 1273, 1423 and 1573 K for 100 s – 14.4 ks for precipitation of copper sulfides and then subjected to observation by a scanning electron microscope (SEM) and a transmission electron microscope (TEM) to measure the size of copper sulfides precipitated in the samples. The growth kinetics of copper sulfides has been found to be well described by the Ostwald ripening model, as follows:



where Rt and R0 are the radii of copper sulfide precipitates, respectively, at t = t and t = 0 where t is time, kO is the rate constant in this model and T is thermodynamic temperature. The diffusion coefficients and activation energy derived from values of kO are close to those of copper in austenitic iron. On the basis of the growth kinetics, it has been proposed that the heat-treatment for as-cast strip steel should be conducted at around 1273 K, at which the size of copper sulfide precipitates can be controlled to be as small as 20–30 nm in several tens of minutes.

著者関連情報
© 2015 by The Iron and Steel Institute of Japan
前の記事 次の記事
feedback
Top