ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Fundamental Forces Driving Analogue Sinter Mix Reshaping
Lauren Andrews Chin Eng LooGeoffrey Evans
著者情報
ジャーナル オープンアクセス HTML

2016 年 56 巻 7 号 p. 1171-1180

詳細
抄録

Major structural change occurs during sintering on melt formation. Melts activate surface forces that drive coalescence processes, as surface energy is reduced. The extent to which coalescence occurs depends on the relationship between surface and viscous forces, which in turn are determined by composition and temperature. In this study, a coal ash fusion furnace was utilised to investigate the impact of composition and temperature on analogue sinter mix tablet reshaping over alumina tiles. Sinter mix compositions were comparable to small size fractions of plant sinter mixes; as they are the first to form melt during sintering operations. A factorial experiment showed basicity to be the dominant driver for reshaping with increasing temperature. Alumina was found to retard reshaping, but only at low sintering temperatures. Material properties, calculated using FactSage and published correlations, were determined as a way to investigate forces acting in the system. Results showed the main determinant of reshaping was apparent viscosity, which was primarily dependent on the amount of melt formed in the sinter mix. The study also used a novel experimental technique, which demonstrated the ability of surface forces to drive reshaping and surface energy reduction when the tablet was suspended from a downward facing tile. This study found that while melt surface tension and wetting behaviour drive system reshaping to reduce surface energy, the extent of sinter mix reshaping was predominately determined by resistance from viscous forces.

著者関連情報
© 2016 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top