ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Effects of Temperature, Refractory Composition and Mass Transfer Rate on Corrosion Rate of Al2O3–SiO2 System Bricks into CaO–SiO2–Al2O3–MgO Slag
Yuta Hino Hisahiro MatsunagaKeiji Watanabe
Author information

2017 Volume 57 Issue 4 Pages 697-705


The corrosion rate of Al2O3–SiO2 system bricks, which are practical fired bricks, into CaO–SiO2–Al2O3–MgO slag was investigated, and the effects of temperature, refractory composition and mass transfer rate in slag on the corrosion rate of the bricks were discussed. As a result, the corrosion rate decreased as the alumina content in the brick increased. The corrosion rate increased with increasing temperature. The corrosion rate decreased with decreasing rotational speed, that is, mass transfer of Al2O3 and SiO2 in the slag phase. Corrosion proceeded at the rate of 1.3 mm/min even when the rotational speed of the refractory sample was 0 rpm. Based on an analysis of the experimental results from the viewpoint of transport phenomena, under the conditions of this study, it is estimated that the reaction proceeds under a condition in which natural convection is rate-controlling for mass transfer when the rotational speed is lower than 44 rpm, in a transition region, that is, a mixed condition of natural convection and forced convection, at speeds of 44–133 rpm, and under a condition in which forced convection is rate-controlling when the rotational speed is over 133 rpm.

Content from these authors
© 2017 by The Iron and Steel Institute of Japan
Previous article Next article