ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Numerical Modeling of Macrosegregation in Round Billet with Different Microsegregation Models
Qipeng DongJiongming Zhang Liang QianYanbin Yin
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2017 Volume 57 Issue 5 Pages 814-823

Details
Abstract

A macrosegregation model, coupling fluid flow, heat and solute transport model, was developed based on continuum model to predict the evolution of macrosegregation in continuous round billet casting, as well as the influence of microsegregation model choice on prediction of macrosegregation. Evolution and characteristics of macrosegregation corresponding to predicted solidification were revealed. As solidification proceeds, solutes are ejected from solid phase to liquid at solidification front. The resulting mushy zone is enriched by solutes, due to the low velocity and limited diffusion, which produces segregation at the billet center as the liquid available for dilution diminishes near the end of solidification. Predicted and experimental results for surface temperature and centerline segregation compare agreeably, which indicates the validity of the coupled macrosegregation model in this work. A detailed analysis was performed to investigate the influence of microsegregation model on prediction of macrosegregation, demonstrating that choice of model affects predicted segregation degree of solutes, which effect varies with type of solute, due to the solute back-diffusion coefficient.

Fullsize Image
Content from these authors
© 2017 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top