ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Ironmaking
Fate of the Chlorine in Coal in the Heating Process
Naoto Tsubouchi Yuuki MochizukiYanhui WangYasuo Ohtsuka
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2018 Volume 58 Issue 2 Pages 227-235

Details
Abstract

Pyrolysis of 29 coals with carbon contents of 71–92 mass% on a dry, ash-free basis (daf) has been performed mainly in a temperature-programmed mode at 10°C/min up to 800°C with a flow-type fixed bed quartz reactor, and some factors controlling HCl formation have been examined. The rate profiles of HCl formation exhibit at least three distinct peaks at around 260–360, 470–510 and 580–630°C, and the lowest temperature peak is present for 8 coals alone, whereas the middle and highest temperature peaks are common with almost all of the coals. The HCl profile is also affected by the size of coal particles and the height of coal particles in the fixed bed. Yields of HCl and char-Cl at 800°C for 28 coals except an American bituminous coal are 44–95 and 4–54%, respectively, and tar-Cl is as low as ≤ 7% in all cases. The chlorine distribution is almost independent of the heating rate in the range of 2.5–400°C/min and has no distinct relationship with carbon or chlorine content in coal, but HCl tends to increase with increasing amount of (Na + 2Ca) in coal with a corresponding decrease in char-Cl. When an Indonesian sub-bituminous coal is injected into an O2-blown entrained bed gasifier under pressure, there is an almost 1:1 relationship between carbon and nitrogen conversions, whereas the sulfur and chlorine are enriched in the remaining char, and the degree of the enrichment is higher with chlorine. The method of evaluating coal-Cl forms quantitatively using model chlorine compounds is proposed.

Content from these authors
© 2018 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top