ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Surface Treatment and Corrosion
Influence of Selective Surface Oxidation of Si and Mn on Fe–Zn Alloying Reaction on Hot-rolled Steel Sheets
Masaki Koba Yusuke FushiwakiYasunobu Nagataki
著者情報
ジャーナル オープンアクセス HTML

2019 年 59 巻 9 号 p. 1650-1658

詳細
抄録

The Fe–Zn alloying reaction and selective oxidation behavior of 0.7 mass% Si-1.15 mass% Mn added hot-rolled steel annealed at 600–800°C were investigated by comparison with those of cold-rolled steel. The Fe–Zn reactivity of the hot-rolled steel improved from 600°C to 700°C but deteriorated from 700°C to 800°C. Above 700°C, the amount of Fe–Si–Mn oxide on the steel surface increased with increasing temperature, and this oxide deteriorated Fe–Zn reactivity. Below 700°C, a thin layer of Fe oxide on the steel surface deteriorated Fe–Zn reactivity. This oxide layer was reduced by Si and Mn that diffused from the steel substrate. Therefore, as the temperature increased from 600°C to 700°C, Fe–Zn reactivity improved due to the formation of reduced iron on the steel surface. In the case of the cold-rolled steel, the same selective oxidation behavior and reduction mechanism of the Fe oxide were also confirmed, and as a result, the Fe–Zn reactivity of the cold-rolled steel showed behavior similar to that of the hot-rolled steel. However, the Fe–Zn reactivity of the cold-rolled steel improved at a lower temperature than that of the hot-rolled steel. This can be explained by the faster diffusion rates of Si and Mn in the cold-rolled steel than in the hot-rolled steel. That is, reduction of the surface Fe oxide layer by diffused Si and Mn proceeded at a lower temperature, and as a result, the Fe–Zn reactivity of the cold-rolled steel also improved at a lower temperature.

著者関連情報
© 2019 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top