ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Ironmaking
Numerical Investigation for the Temperature Dependency of Coke Degradation by CO2 Gasification Reaction in a Blast Furnace
Yui Numazawa Yohsuke MatsushitaHideyuki AokiAtsuki Komiya
著者情報
ジャーナル オープンアクセス HTML

2020 年 60 巻 12 号 p. 2686-2694

詳細
抄録

To quantitatively evaluate the temperature dependency of coke degradation by CO2 gasification reaction in a blast furnace, kinetic analyses of gasification reaction with mass transfer for the coke model with approx. 200 million voxels developed from X-ray CT images at the reaction temperatures of 1373, 1573, 1773 and 1973 K were performed. At high reaction temperature, the gas concentration of CO2 was high in the external area of the coke model, and the coke matrix voxels vanished mainly around the external surface. Distinguishing surface area of interface between a carbon matrix voxel and a pore voxel with the gas concentration of CO2 at a neighbor pore voxel, although the surface area with the high gas concentration of CO2 accounted for the majority of the total surface area at 1373 K, the ratio was lower at over 1573 K than at 1373 K. In addition to this, from the effectiveness factor of catalyst, the initial rate-controlling step was chemical reaction at 1373 K but pore diffusion at over 1573 K. Also, although the frequency distribution of local porosity showed unimodal regardless of the progress of reaction, the standard deviation calculated from the distribution was changed by reaction. The change rate of the standard deviation by reaction seemed to be larger at high reaction temperature than at low reaction temperature. The logarithm of the change rate hardly depended on reaction temperature under 1573 K but was proportional to the inverse of the temperature over 1573 K. This study quantitatively showed that the rate-controlling step affects the coke structure after reaction largely.

著者関連情報
© 2020 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top