ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Fundamentals of High Temperature Processes
Structural Evolution of Molten Slag during the Early Stage of Basic Oxygen Steelmaking
Rui ZhangYi Min Yu WangXuan ZhaoChengjun Liu
著者情報
ジャーナル オープンアクセス HTML

2020 年 60 巻 2 号 p. 212-219

詳細
抄録

The better understanding of structural effect of composition is of primary importance in the design of converter slag and for rationalizing the foaming performance of smelting process. In the present work, the CaO–SiO2–FexO samples with different compositions were prepared to simulate the converter slag of initial smelting stage. The compositions and structural units of slag samples were investigated by combining X-ray fluorescence spectroscopy and Raman spectroscopy. According to the results, the transformation behaviors of structural units and the degree of polymerization (DOP) of molten slag were further analyzed. The results of Raman spectra showed that when basicity increased from 0.38 to 0.97 and total iron content decreased from 32.77 to 13.26 mass%, increasing O2− led to the depolymerization of [SiO4]4− tetrahedrons from Q3 to Q0 units and the increasing [FeO4]5−/[FeO6]9− ratio. With further increasing basicity from 0.97 to 1.25, Q3 units disappeared and more O2− reacted with [FeO4]5− tetrahedrons to form [FeO6]9− octahedrons. Meanwhile, Fe3+ could probably form Si–O–Fe bond by replacing Si4+ cations in Q3 units. Overall, the depolymerization of [SiO4]4− tetrahedrons from Q3 to Q0 units was the main reason for the decreasing DOP of molten slag during the early stage of basic oxygen steelmaking.

著者関連情報
© 2020 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top