ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Forming Processing and Thermomechanical Treatment
Effect of Nanofluids on Liquid-solid Heat Transfer on High-temperature Wall
Xiuhua TianTianliang Fu Jiawen ZhangZhaodong WangGuodong Wang
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 9 Pages 1993-1999

Details
Abstract

The industrial application of nanofluids had been explored by many researchers since nanofluids were proposed. However, there were different opinions on the effect in jet cooling. In this paper, 0.4 vol%, 0.8 vol%, 1.2 vol%, 1.8 vol%, 2.4 vol% Al2O3-water, TiO2-water, SiO2-water nanofluids and pure water were used as quenching coolants to complete single jet cooling experiments on the free surface of 50 mm high-temperature steel plate. The results showed that using low concentration (0.4–1.2 vol%) nanofluids could significantly improve the maximum heat fluxes, cooling speed peaks, and moving velocities of peaks along the thickness direction compared with pure water. However, the cooling uniformity in the horizontal direction was reduced, especially with high concentration nanofluids (≥1.8 vol%). Through comprehensive comparison, when 1.2 vol% Al2O3 + water was used as coolant, the optimal cooling efficiency could be achieved, and cooling speed peaks along the thickness were 8.14%–19.70%, 2.16%–3.48% and 0.74%–1.44% higher than that of pure water respectively.

Content from these authors
© 2020 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top