ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Instrumentation, Control and System Engineering
Torque Model in Plate Rolling Process with Biting Impact Considered
Zhijie Jiao Chunyu HeLongxin WangYuanliang CaiXu WangXudong Sun
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 1 Pages 239-247

Details
Abstract

In this paper, the research work of the torque model in plate rolling process, with biting impact considered, is carried out based on mechanical dynamics and the rolling process technology. The five-degree-of-freedom mechanical dynamic model was established for the main drive system of the actual heavy plate mill, considering the clearance between parts. The biting peak torques under different rolling process conditions were calculated. The influence of the biting time and the steady-state torque were analyzed: the biting peak torque decreases with the biting time increasing, and increases with the steady-state torque increasing. The biting time calculation model was established based on the rolling process parameters. The steady-state torque model was improved by rebuilding level arm ratio model. The influence of deformation area arithmetic average aspect ratio and reduction rate was considered. The calculation model of biting peak torque is built with biting time and steady-state torque influence. The model accuracy is verified by comparing the calculated data with actual data. The average deviation of steady-state torque and peak biting impact torque is within ± 8%, and ± 10%. The accuracy of these models can be improved by offline intelligent method and online learning function, subsequently.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top