ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Mechanical Properties
Structure-Property Correlations of a Medium C Steel Following Quenching and Isothermal Holding above and below the Ms Temperature
Shima PashangehMahesh Somani Syyed Sadegh Ghasemi Banadkouki
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 1 Pages 442-451

Details
Abstract

The processing of advanced multiphase high strength steels often includes isothermal treatments around the martensite start temperature (Ms) for achieving a refined microstructure comprising bainite-austenite and/or bainite-martensite-austenite phase constituents. The objective of this research work was to investigate the structure-property relationship for a medium carbon, high-silicon DIN 1.5025 steel (Fe-0.529C-1.67 Si-0.72Mn-0.12Cr (in wt.%)) following isothermal holding close to the Ms temperature (~275°C) to enable low temperature austenite decomposition. For realizing multiphase microstructures, DIN 1.5025 steel samples were austenitized at 900°C for 5 min and then quenched to the isothermal holding temperatures 350 and 250°C for various times ranging from 5 to 3600 s. Microstructural investigation corroborated the formation of multiphase microstructure comprising tempered martensite, bainite, retained austenite, and fresh martensite in both the samples isothermally held above (350°C) and below the Ms (250°C) temperature. The sample isothermally held at 250°C showed a much more refined microstructure in comparison to that held at 350°C due to the presence of a fraction of initial martensite laths which acted as potential sites for bainite nucleation. Also, the evaluation of mechanical behaviour showed that the best tensile properties in terms of high tensile strength and good ductility were achieved in samples with high volume fractions of both interlath and blocky retained austenite, particularly those isothermally treated at 350°C for 200 s and at 250°C for 600 s, respectively.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top