ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Fundamentals of High Temperature Processes
Prediction of Final Solidification Position in Continuous Casting Bearing Steel Billets by Slice Moving Method Combined with Kobayashi Approximation and Considering MnS and Fe3P Precipitation
Weixian WangHongwei Zhang Keiji NakajimaHong LeiGuofeng TangXinghua WangWangzhong MuMaofa Jiang
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 11 Pages 2703-2714

Details
Abstract

Control of MnS and Fe3P precipitate are of vital importance for the quality of the bearing steels. The precipitation behavior is not only related to shortening the bearing steel’s fatigue life, but also to another serious engineering problem i.e. changing the billet final solidification position. In order to distinguish the different precipitate behavior on the influencing of the final solidification position, a slice moving method combined with Kobayashi approximation and the MnS and Fe3P precipitation is developed. The continuous casting billet of seven-component bearing steel, i.e. Fe–C–Cr–Mn–Si–P–S system, is considered as the raw material. Upon the present chemical composition of 0.004 to 0.007 mass% S and 0.011 to 0.012 mass%P in 100Cr6 (DIN-Norm) and RAD1 (GB-Norm) alloy, the MnS but not Fe3P precipitate covers the billet cross section. The onset of Fe3P precipitation is at 0.019 mass% P in 100Cr6 alloy and 0.021 mass% P in RAD1 alloy. The distribution of the maximum amount of MnS and Fe3P precipitate is similar, i.e. concentrating at the billet center. The increase of P composition, besides accelerating the precipitation of MnS and Fe3P, elongates the liquid core length. In contrast, the increase of S composition and the precipitation of MnS greatly shortens the liquid core length. Thus it is vital to control composition of S, P solute to a low level in bearing steels in order to stabilize the final solidification position.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top