ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Development and Comprehension of Novel Experimental Technology for High Temperature Processing"
Effect of Tundish Flux on Compositional Changes in Non-metallic Inclusions in Stainless Steel Melts
Tae Sung KimSang-Beom LeeJoo Hyun Park
著者情報
ジャーナル オープンアクセス HTML

2021 年 61 巻 12 号 p. 2998-3007

詳細
抄録

The effect of the tundish flux on the evolution of non-metallic inclusions in Si-killed 304 (18%Cr-8%Ni) stainless steel has been investigated at 1773 K. The interfacial reaction between molten steel and the CaO–Al2O3–MgO flux causes the aluminum pick-up from the liquid slag into the steel melt, resulting in a decrease in the oxygen content in the steel. The aluminum originating from the slag modifies the pre-existing Mn-silicate inclusions into alumina-rich inclusions in the steel. Because the oxygen content in the steel decreases as it reacts with the CaO–Al2O3–MgO flux, the degree of supersaturation for alumina formation is too low to precipitate new-born alumina particles in the steel. By analyzing the population density function (PDF) results for inclusions, it can be observed that the growth of spinel-type inclusions occurs by the diffusion of aluminum and magnesium in the steel. On the other hand, the composition of the steel, as well as the evolution of inclusions, is negligibly changed when the CaO–SiO2–MgO flux is added to the molten steel. Furthermore, the computational simulation for predicting the evolution of inclusions in molten steel during a continuous casting tundish process was carried out based on a refractory-slag-metal-inclusion (ReSMI) multiphase reaction model.

A schematic diagram showing the reactions in the tundish during the continuous casting process. Fullsize Image
著者関連情報
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事
feedback
Top